(R)-(+)-8-VERATRYL-Y-BUTYROLACTONE, A NEW KEY-INTERMEDIATE FOR THE ASYMMETRIC SYNTHESIS OF VARIOUS LIGNANS

Eric BROWN* and Alain DAUGAN

Laboratoire de Synthèse Totale de Produits Naturels (U.A. n° 482), **Faculte des Sciences, Route de Laval, BP 535, 72017 Le Mans, France.**

Summary : *MethyZ a-veratrylhemisuccinate was resolved into its (RI-(+) and (Sl-c-l antipodes by fS)-(-)* and *CR)-f+)-a-methylbenzylamine respectively. Calcium borohydride reduction of the (Rl-l+)-hemiester afforded CR)-(+)-B-veratryl-y-butyrolactone. The latter was used* for the synthesis of various naturally occurring lignans such as $(+)$ -dimethylisolariciresinol, (-)-kusunokinin *and (-)-dimethylmatairesinol.*

In a recent paper¹ we described a new and simple synthesis of $(R)-(+)$ and $(S)-(-)-\beta$ **piperonyl-y-butyrolactones, which are key-intermediates for various lignans and biologically active lignan analogues. 2 Following a similar line, we describe here the synthesis of the hitherto unknown (R)-(+) and (S)-(-)-8-veratryl-y-butyrolactones 2, and the synthesis of various optically active lignans starting from (R)-(+)-2.**

The known racemic half-ester 1 is readily available in a one hundred gram scale by Stobbe condensation on veratraldehyde, followed by catalytic hydrogenation.3 This racemic halfester 1 was treated with (S)-(-)-a-methylbenzylamine (1 equivalent) in ethyl acetate. The least **soluble salt was recrystallized four times, to reach constant m.p. 125-127.5"C and specific** rotation [a]_D +17° (c 1, CHCl₃). This pure salt (obtained in 40% yield) was treated with di**lute HCl, almost quantitatively affording the optically pure half-ester (R)-(+)-1, m.p. 99-** 101,5°C (ether), $[\alpha]_n$ +27° (c 1.2, ethanol). A partially resolved sample of (S) -(-)-1 having [α]_D -20° (obtained from the previous experiment) was treated with (R)-(+)-α-methylbenzyl**amine (1 equivalent) in AcOEt and the least soluble salt was recrystallized to reach constant** m.p. 125-129°C and [a]_n -17° (CHC1₃). This pure salt was acidified as above, quantitatively yielding the half-ester (S) - $(-)$ -1, m.p. 99.5-101.5°C, $[\alpha]_D$ -28° (c 0.92, EtOH).

A sample of (S)-(-)-lwas racemized without decomposition or side-reactions by refluxing with 2 equivalents of sodium methoxide in dry methanol for 24 hours.

The half-ester (R)-(+)-1 was reduced with calcium borohydride in ethanol, as described in the racemic series,³ affording the B-veratryllactone (R)-(+)-2 as a colourless oil, [a]_D +8° (c 2.69, CHC1₃) and in nearly quantitative yield after molecular distillation. The enantiomeric lactone (S) - $(-)$ - $\underline{2}$, $[\alpha]_D$ -8° (c 1.95, CHCl₃) was similarly obtained from the half**ester (S)-(-)-1.**

The lactone (R)-(+)-2_was next hydroxyalkylated with veratraldehyde using hexamethyl disilazide as a base' (benzene solution, room temperature, 4 min), thus affording the epimeric mixture of alcohols <u>3</u> in 88% yield. This mixturewas intramolecularly cyclized with CF₃CO₂H in

CH₂Cl₂ at RT for 4 hours, giving (-)-α-dimethylretrodendrin 4, m.p. 188-189°C, [α]_n -58° (c 1, acetone) in about 90% yield. Lit.~ m.p. 189.5-191.5°C, [α]_D -58° (acetone). The lactone ring of <u>4</u> was reduced with LiAIH_A in THF at RT for 2 h 30 min, affording (+)-dimethylisolaric **resin01 5, m.p. 176-178°C (MeOH), [a], +12" (c 0.64, CHC13), in 84% yield after recrystallization. Lit.5 m.p. 175-177°C and [a], +I2 (CHC13).**

The lactone (R)-(+)-2_was alkylated with piperonyl bromide in dry THF, using lithium diisopropylamide as a base (-8O"C, 3 h), giving (-)-kusunokinin 5 as an amorphous solid, [a], -36" (c 1.1, CHC13), in 81% yield after chromatography. Lit.6 [a], -31.4". A sample of (-) kusunokinin 5 was reduced with diisobutyl aluminium hydride in toluene at -80°C for 2 hours, giving (-)-3,4-dimethoxy-3,4_desmethylenedioxycubebin 7, m.p. 88-90°C (needles from ether), [a]_D -53° (c 0.86, CHC1₃), in 82.5% yield after recrystallization. The literature⁷ indicates **m.p. 89-91°C (no optical rotation is reported).**

In a **similar fashion, the lactone (R)-(+)-2 was alkylated with veratryl bromide in _ dry THF using LDA as a base, at -78°C for 3 hours. (-)-Dimethylmatairesinol 8, m.p. 128.5-** 130.5°C (AcOEt/cyclohexane), [α]_D -35° (c 1.95, CHCl₃), was thus obtained in 62% yield after chromatography and recrystallization. The literature⁸ indicates m.p. 127-128°C (MeOH) and $[\alpha]_D$ -35.6° (c 3.7, CHCl₃). Partial reduction of the lactonic carbonyl of (-)-dimethylmatairesinol **8 using DIBAL in toluene at -80°C for 2 hours, gave (-)-9 as a sharp-melting solid, m.p. 146-** 148°C (needles from CH₂Cl₂/Et₂0), [α], -41° (c 0.76, CHCl₂), in 88% yield after recrystalliza tion. The literature⁶ indicates m.p. 147-148°C, [α]_n -19.8° (solvent unknown) for (-)-kusuno **kinol 2 (stereochemistry at C-2 unspecified). However, the specific rotation** [al, **-41" we observed for (-)-2 is in good agreement with the corresponding data observed for the following two very closely related lignans, compound I,** [al, **-45.9" (c 2, CHCl,).' -53" (see above) and (-)-cubebin lo, [al, On the other hand, reduction of (_+)-dimethylmatairesinol 8, m.p. 107.5-** 109.5°C (Et₂0), using DIBAL in toluene at -78°C, afforded (±)-9 as a sharp-melting solid, m.p. 145-147°C (needles from Et₂0). The ¹H-NMR spectrum of (\pm)-9 in CDCl₃ solution showed a broad peak at δ 5.25 ppm ascribed to the hemiacetalic proton at C-2. The \sim ¹³C-NMR of (±)-9 in CDCl₃ **solution showed a splitting of various signals, and especially of the signal of the C-2 hemiacetalic carbon which appeared at 6 103.45 ppm and 6 98.47 ppm, thus affording a proof of the** presence of two C-2 epimers in solution, in the ratio ca 60:40 respectively. The chemical shift **of the C-2 of the major epimer is very close to the corresponding value (6 103.5 ppm) reported** for (-)-cubebin <u>10</u>.¹⁰ By comparison of the 13 C-NMR data was observed for (±)-<u>9</u> with those reported by CAMBIE and coworkers¹¹ for similar compounds, α- and β-intermedianols, whose struc_: ture was unambiguously established by X-ray, we can ascribe to the major epimer of (\pm) -9 (in solution) a 2-OH group in the **B** position corresponding to the more stable trans C-2, C-3 **stereochemistry. Moreover it can be inferred that crystalline synthetic (-)-2 as well as (-)** cubebin 10 have a β -OH. The discrepancy between the $\lceil \alpha \rceil$ values of (-)-9 (2 β -OH) and (-)-kusu- $\frac{1}{2}$ might be due to the fact that the latter is the 2 α -OH epimer.

Finally, treatment of (-)-dimethylmatairesinol 8 with LiAlH_A in THF at room temperature for 3 hours afforded (-)-dimethylsecoisolariciresinol 11, m.p. 122.6-124°C (CH₂Cl₂/ether),

All the compounds described in this paper were characterized by IR and 'H-NMR spectrometry. The new compounds $(R)-(+)$ -1, $(S)-(-)$ -1, $(R)-(+)$ -2 and $(S)-(-)$ -2 also gave good micro**analytical results.**

Conclusion

We have prepared $(R)-(+)$ - β - veratryl- γ -butyrolactone 2 in four steps from veratral**dehyde, including resolution of the intermediate methyl a-veratrylhemisuccinate (R,S)-1 by** means of (S)-(-)-a-methylbenzylamine. The "non natural" antipode (S)-(-)-1 can be racemized **and recycled in view of further resolution, which makes the whole synthetic process both economical and preparative.**

We used the lactone $(R)-(+)$ -2 as a starting material for the asymmetric synthesis of the seven lignans 4-9 and 11. This is the first time the natural compounds 5-9 and 11 are ob**tained in optically active form by total synthesis.**

Aknowledgements

We thank Dr. R. DHAL for useful discussions.

References

- **1 E. BROWN and A. DAUGAN, Tetrahedron Letters, 2&, 3997 (1985).**
- **2- E. BROWN and A. DAUGAN, unpublished results.**
- 3 a) P.A. GANESHPURE and R. STEVENSON, J. Chem. Soc. Perkin I, 1681 (1981) ; b) M. LORIOT, Thèse de doctorat ès sciences, Le Mans, p. 113 (1982).
- **4- J.P. ROBIN, R. DHAL and E. BROWN, Tetrahedron, 38_, 3667 (1982).**
- **5 M.E. CISNEY, W.L. SHILLING, W.M. HEARON and D.W. GOHEEN, J. Amer. Chem. Sot., 76, 5083 (1954).**
- **6- D. TAKAOKA, N. TAKAMATSU, Y. SAHEKI, K. KONO, C. NAKAOKA and M. HIROI, Nippon Kagaku Kaishi, 12, 2192 (1975).**
- **7- G. RUCKER and 8. LANGMANN, Tetrahedron Letters, 457 (1978).**
- **8- R.D. HAWORTH and T. RICHARDSON, J. Chem. Sot., 633 (1935).**
- **9-** J.E. **BATTERBEE, R.S. BURDEN, L. CROMBIE and D.A. WHITING, J. Chem. Sot. (C), 2470 (1969).**
- **10 S.K. KOUL, S.C. TANEJA, K.L. DHAR and C.K. ATAL, Phytochemistry, 2, 999 (1983).**
- **11 R.C. CAMBIE, G.R. CLARK, P.A. CRAW, T.C. JONES, P.S. RUTLEDGE and P.D. WOODGATE, Aust. J. Chem., 38, 1631 (1985).**
- **12 S.T. FONSECA, L.T. NIELSEN and E.A. RUVEDA, Phytochemistry, l8_, 1703 (1979).**

(Received in France I June 1986)